Double Spin Asymmetry of Single Electron Production at PHENIX Experiment

Katsuro Nakamura

for the PHENIX collaborator

(RIKEN BNL Research Center / Kyoto University)

Lake Louise Winter Institute 2012
2012/ 2/ 25

Internal Structure of a Nucleon

- Internal structure of a nucleon ~parton model ~
 - discovery of Bjorken scaling law
 - establishment of the parton model
 - Bjorken x : the momentum fraction of parton
 - total momentum fractions for each parton
 - $U:D:g \sim 36\%:18\%:46\%$
- proton spin puzzle

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$$
proton spin quark spin gluon spin orbital

- Deeply Inelastic Scattering (DIS) experiment
- $\Delta \Sigma \sim 25\%$!?
- Large contribution from gluon polarization?

proton (spin1/2)

 $oldsymbol{0}: u(\bar{u}) oldsymbol{0}: d(\bar{d}) oldsymbol{0}: s(\bar{s}) \cdots : g$

△G Measurement in Polarized p-p-Collisions

• gluon polarization Δg can be accessed with the double spin asymmetry A_{LL}

Brookhaven National Lab. (Ü.S.) RHIC accelerator

Brookhaven National Lab. (Ü.S.)

RHIC accelerator

RHIC CNI (pC) Polarimeters

- the world's only accelerator for the polarized proton collisions
 - bunch-by-bunch spin direction is different

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

N : yield of the specific particle

$$R \equiv \frac{L_{++}}{I}$$
: relative luminosity

spin direction spin direction ++--+-

Siberian Snakes

 \bigcirc : a bunch of protons (\sim 2 \times 10^{11} protons)

p- $p\sqrt{s}=200$ GeV performance at PHENIX

Year	polarization(%)	L _{analyzed} (pb ⁻¹)	FOM (P⁴L)
2005	50	2.5	0.15
2006	57	6.5	0.66
2009	57	14 [6.1]	1.5 [0.64]

***]: for heavy quark measurement

√inter Institute 2012

RHIC PHENIX detector

PHENIX (Central Arm region)

- pseudrapidity: $|\eta| < 0.35$
- azimuthal coverage: $\Delta \phi = 2 \times \pi/2$
- Drift Chamber + Pad Chamber (DC + PC)
 - tracking & momentum reconstruction for charged tracks
- RICH Counter
 - electron identification
- Electromagnetic Calorimeter (EMCal)
 - energy measurement for electrons& photons
- Hadron Blind Detector (HBD)
 - a new detector for further electron identification
 - BG rejection for the electron measurement

Current A_{LL} Results at PHENIX

A_{LL} of π^0 production

- The most abundant probe in PHENIX
- The largest constraint for ΔG
 - uncertainty from fragmentation functions since it is a combination of g-g, g-q and q-q reactions

A_{LL} of direct γ production

- only q-g in leading order
 - direct sensitivity to size and sign of ΛG
- no fragmentation effect
 - low statistics due to QED process

Current Constraints on ΔG from A_{LL}^{-1}

- Compare ${A_{LL}}^{\pi^0}$ with GRSV calculation
 - GRSV: a model of $\Delta g(x)$ function form
- prefer small ΔG value
 - small model dependence

- Global fitting result of $\Delta g(x)$ with DIS + RHIC data
 - node structure ?

A_{LL} of Heavy Quark Production

$$A_{LL}^{\text{Heavy Quark}} \equiv \frac{\sigma_{++}^{HQ} - \sigma_{+-}^{HQ}}{\sigma_{++}^{HQ} + \sigma_{+-}^{HQ}}$$

$$\sim \frac{\int \Delta g \otimes \Delta g \otimes \Delta \hat{\sigma}^{gg \to QX} \otimes D_Q^h}{\int g \otimes g \otimes \hat{\sigma}^{gg \to QX} \otimes D_Q^h}$$

A_{LL} of heavy quark production

- g-g scattering is dominant process
 - direct measurement for the gluon polarization
 - small uncertainty from FF
- hard process due to large mass
 - validity of pQCD
- a suitable channel to measure the gluon polarization

distribution of Bjorken x of gluons

A_{LL} of Single Electron Production

- measurement of the heavy quark at PHENIX
 - detect an electron from heavy meson decay

- spin asymmetry of the single electron production
 - asymmetry of inclusive (Signal+BG) electron production A_{II}^{S+BG}

$$A_{LL}^{\text{single e}} \approx \frac{1}{D} A_{LL}^{\text{S+BG}}$$
 $D \equiv \frac{N_e^{\text{single e}}}{N_e^{\text{S+BG}}}$: Signal Occupancy

BG reduction for large Signal Occupancy is important for the measurement of the spin asymmetry

photonic electron

photon conversion

$$\pi^0(\eta) o\gamma\gamma$$
, $\gamma o e^+e^-$ (in material)

Dalitz decay

$$\pi^0(\eta) \rightarrow \gamma e^+ e^-$$

non-photonic electron

heavy meson decay

$$D \rightarrow e^{\pm} + X$$
 (signal)

- Kaon decay : $K^\pm o \pi^0 v_e e^\pm$
- vector meson decay : $V \rightarrow e^+e^-$

Hadron Blind Detector (HBD)

- Hadron Blind Detector
 - gas Cerenkov detector read out with CsI evaporated GEM
 - <u>electron identification</u>
- this analysis is the first time of physics measurement with HBD

measurement of spin asymmetry of single electron production

Signal Occupancy: D

- the important value for the asymmetry measurement
- increase by about *factor of 1.5* from previous measurements due to the HBD performance

Spin Asymmetry for

Single Electron Production

spin asymmetry of single electron production

- success of an approach to $\Delta g/g(x)$ by using the very clean channel
 - $A_{LL}^{single\ e}$ (0.5 < p_T < 1.5 GeV/c) = (3.1 ± 5.5^{stat.} ± 5.7^{syst.}) × 10⁻³
 - estimation of the constraint for $\Delta g/g(x)$ from the result is on going now

Summary

Summary

- Spin asymmetry of single electron production is a suitable probe to measure the gluon polarization in a proton.
 - directly access to gluon property in a proton
 - small uncertainties from fragmentation functions
- New detector HBD increases the "Signal Occupancy" by a factor of about 1.5 compared with previous measurements
- The approach to the $\Delta g/g(x)$ with the clean probe is succeeded.
 - $A_{LL}^{single\ e}$ (0.5 < p_T < 1.5 GeV/c) = (3.1 ± 5.5^{stat.} ± 5.2^{syst.}) × 10⁻³

Future Prospect

• estimation of constraint on $\Delta g/g(x)$ from the result is on going now

Kyoto Univ. RIKEN

backup slides

ΔG Measurements

DIS experiment

- lepton-nucleon scattering
- next leading order measurements
 - $-Q^2$ evolution of quark polarization
 - high p_T hadron pair measurement
 - open charm measurement

DSS Deb Speer present needs wirtual virtual vi

Complementary approaches for ΔG

polarized p-p experiment

- direct contributions from g-q and g-g scattering
- various channels for ΔG measurement
 - π^{0}
 - open heavy quarks (this talk)
 - direct γ
 - etc...

polarized p-p experiment

Spin Asymmetry for Single Electron Production

spin asymmetry of single electron production

Background

for the Single Electron Measurement

dominant background

photon conversion background $\pi^0(\eta) \to \gamma \gamma \quad \gamma \to e^+ e^- \text{ (in material)}$

Dalitz decay

$$\pi^0(\eta) \rightarrow \gamma e^+ e^-$$

direct photon conversion small, but significant at high p_T

non-photonic electron

Heavy meson decay

$$D \rightarrow e^{\pm} + X$$

(signal)

Kaon decay

$$K_{e3}: K^{\pm} \rightarrow \pi^0 \, \nu_e \, e^{\pm}$$
 ~ a few% of

$$\omega, \rho, \phi, J/\psi, Y \rightarrow e^+$$
 at $p_T > 0.50 \text{GeV/c}$

background

vector meson decay non-photonic electrons

PHENIX 05' single e and BG cross section

New Analysis Method for the Single Electron

electron analysis with HBD

- estimate the fractions of single e clusters and merged clusters by fitting HBD charge distribution
- reject merged clusters with HBD charge cut effectively

Yield of single electrons

Yield of single electrons is estimated with this method
 established a new analysis method
 for single electron analysis

Check of Cross Section Spectrum

cross section of single electron production

- cross section of single electron production
 - good consistency with previous measurements
- different analysis method from previous measurements
 - converter & cocktail
 method for 2005 and
 2006 results

<u>confirmation of the reliability</u> <u>of the analysis method with HBD</u>